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ON ASSOCIATED RADIAL HEAT EXPANSIONS 

L. R. Bragg, Case I n s t i t u t e  of  Technology 

1. Introduction. Let p > 1 and l e t  A denote the r ad ia l  Laplacian 

Criterion has recent ly  been given ( [  11, [ 31) 
P 

operator A e 2  = Dr t & D  
P r r*  

under which a c l a s s i ca l  solution u ( r , t )  o f  the r a d i a l  heat equation 

a - u ( r , t )  = A u ( r , t )  a t  P 

has va l id  s e r i e s  representations i n  terms of  the s e t  of  r a d i a l  heat 

polynomials {R?( r ,  t) ]yz0 and the s e t  of associated r a d i a l  f w c t i o n s  
J 

co {T(r,t)]j=o. These sets a re  defined by 

j = 0, 1, 2 ,  ... 
(b) F ( r , t )  = t -2j  S ( r , t ) R ? ( r , - t )  

J P J 

where L(P/2-1)(x) i s  the generalized Laguerre polynomial of  degree j 
j 

and index L4 - 1 and S (r , t)  i s  t h e  source solution (41-h) -P/2e-r2/4t 
2 P 

It  was shown t h a t  i f  a solution u ( r , t )  

property and s a t i s f i e s  the additional condition 

of (1.1) exhibi ts  t he  Huygens’ 

(1 .3 )  

for t > u 2 - 0, then t h i s  u ( r , t )  has an absolutely convergent expansion 

i n  terms of t he  s e t  @?(r,t) )“ 

e f f i c i e n t s  i n  the  expansion 

f o r  t > u 2 0 .  Moreover, the  co- j=O - 
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a r e  defined by the  i n t e g r a l  

This s e r i e s  representat ion can be replaced by the  i n t e g r a l  representat ion 

0)  

given by + ( S )  = 1(-1) j j  4 a j  t 2 j  and 

j =O 

(1.7) 

I t  i s  apparent t h a t  the  construction o f  an associated r a d i a l  

hea t  expansion f o r  a su i tab le  

e f f i c i e n t .  

u ( r , t )  by means of (1.4) i s  not very 

The purpose of t h i s  note i s  t o  give a procedure f o r  ob- 

t a in ing  such a s e r i e s  representation t h a t  of ten  avoids the  usage of 

(1.4). The knowledge of t h i s  se r ies  will a l so  lead d i r e c t l y  t o  the  

appropriate choice for + ( 5 )  i n  (1.6). From the  f a c t  t h a t  the  T(r,t) 
a r e  defined i n  terms of t he  Laguerre polynomials, one would expect t o  

make use of some spec ia l  property o f  them i n  t h i s  construction. 

A procedure t h a t  involves the  Laplace transform w i l l  prove t o  

be e f f ec t ive  i n  t r ea t ing  t h i s  problem. Expansions of functions i n  

terms of Laguerre polynomials by means of the Laplace transform have 

received some a t ten t ion .  Doetsch [2]  has examined t h i s  approach and 

has  given a r a the r  de ta i led  proof f o r  i t s  v a l i d i t y  ( a l so  see [ 4 ] .  
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The method f o r  evaluating the a along with the  proof of n 

i t s  v a l i d i t y  i s  given i n  Section 2. Examples of t he  use of t h i s  

technique a re  given i n  Section 3 t o  obtain exp l i c i t  expansions of  

t he  form (1.4) a s  well a s  in tegra l  representations o f  the  form (1.6). 

A byproduct of t h i s  i s  t h a t  we obtain the  evaluations of  some ra ther  

complicated in tegra ls .  

2. A Coefficient Determination. Let u ( r , t )  be a solut ion of 

(1.1) t h a t  s a t i s f i e s  t he  Huygens’ property and (1.3) and l e t  

x = r /4t. Upon equating t h i s  u t o  the se r i e s  (1.4) and using 

(1.2) ,  we obtain 

2 

Now multiply both members of t h i s  by 212-’ and form the  Laplace 

transform of both members of t h i s  by se lec t ing  

ing var iable  f o r  x. It  follows t h a t  [ 2 ]  

1 - 
P 

as the  transform- 

The i n t e g r a l  here ex i s t s  f o r  p 

, t) 2 1 2 - 1  dx 

PPI*( l-p) j . 

near 1 by the  condition (1.3). Next, 

multiply both members o f  t h i s  by p *I2 and evaluate the  nth deriva- 

t i v e  of  both members of t h i s  with’respect t o  p a t  p = 1. We ge t  



For the  purpose o f  showing t h a t  (2.3) reduces 

observe t h a t  (see [5 ] ,  p.84) 

1 - (- - 1 ) x  
P -P/2 e P = - (1-P)l  -v/2 e-x(l-P)/[l - (1-P) 1 

OQ 

j =O 

It  r e s u l t s  t h a t  

Final ly ,  subs t i tu t ing  t h i s  l a s t  i n to  (2.3) gives 

The reduction of t he  r i g h t  member of t h i s  t o  the  r i g h t  member of (1.5) 

now fo l lows  by reintroducing the change of  var iables  

dx = - dr) i n t o  t h i s  and replacing Ln ( r  /4t) i n  terms of 

x = rZ/.4t (with 

r ($-I) 2 
2 t  

R r,-t) by means of (1.2a). 3 
It  i s  c l ea r  from t h i s  tha t  i f  we have an e x p l i c i t  evaluation of 

t h e  l e f t  member of (2.2),  then we can determine t h e  coef f ic ien ts  

i n  (1.4) without resor t ing  t o  the in t eg ra l s  (1 .5 ) .  

can then formulate other  representations,  both s e r i e s  and in tegra l ,  

an 

I n  these cases, we 
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ra ther  readily.  

3. 

procedure t o  spec i f i c  functions. 

i n t e r e s t  here i s  the connection between various i n t e g r a l  represen- 

t a t i o n s  f o r  t he  same function. 

Some Examples. We now indicate  the  app l i cab i l i t y  of the  above 

One of  t he  pr inciple  points  o f  

The 'good' examples make note of t h i s .  

-p/2e-a r2/(l t~+at) Example 1. Let a > 0 and l e t  u ( r , t )  = ( l t 4 a t )  

Then the  condition (1.3) i s  sa t i s f i ed  by choosing 

i n  brackets i n  the  r i g h t  member of (2.3) has the  evaluation 

u = 1/4a. The term 

P/2 1 
r ( ~ / 2 ) ( 1 t & a t - p ) - ~ / ~ .  I t  follows by (2.3) t h a t  an = (:) 

(16a)nn! ' 

We then have the  p a i r  o f  representations 

Compare the  l a t t e r  with the  second formula on page 35 of  [ 5 ] .  

Example 2. p = 2 and 

2 r 

l t 1 6 t  
s i n  - u ( r , t )  = ( l t 16 t2 )  e -4r2t/( l t16t2)  

I n  t h i s  case, the  bracketed term i n  the  r igh t  member o f  (2.3) i s  j u s t  

-1 
4t[16t2 t ( ~ - 1 ) ~ ]  . I t  then follows i n  t h i s  case t h a t  



k' 

4 c 

t h e  

1. 

2. 

3. 

4. 

5. 

- 6  - 

These representations converge absolutely i f  

The given function u ( r , t )  

t o  t he  i n i t i a l  data  u(r,O) = s i n ( r  ) .  From [l], it follows t h a t  we 

t > 1/4.. 

here is a solut ion of (1.1) corresponding 

2 

a l so  have the  following in t eg ra l  representation f o r  t h i s  same u ( r , t ) :  

-t Example 3. p = 2 and u ( r , t )  = e Jo(r) .  I n  t h i s  s i t ua t ion  

c r i t e r ion  (1.3) f a i l s  and s o  no expansion of t he  type (1.4.) ex i s t s .  
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